

INDIAN INSTITUTE OF SCIENCE BANGALORE - 560012

ENTRANCE TEST FOR ADMISSIONS - 2010

Entrance Paper : Chemistry

Paper Code : CY

- **Program : Research**

Day & Date SUNDAY, 25TH APRIL 2010

Time 9.00 A.M. TO 12.00 NOON

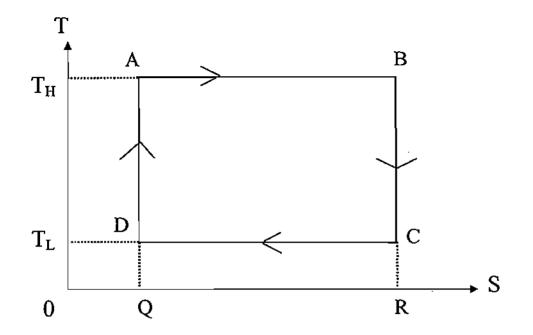
INSTRUCTIONS

- 1. This question paper consists of only multiple-choice questions. All questions carry one mark each.
- 2. Answers are to be marked in the OMR sheet provided.
- 3. For each question, darken the appropriate bubble to indicate your answer.
- 4. Use only HB pencils for darkening the bubble.
- 5. Mark only one bubble per question. If you mark more than one bubble, the answer will be evaluated as incorrect.
- 6. If you wish to change your answer, please erase the existing mark completely before marking the other bubble.
- 7. There will be NEGATIVE marking. NEGATIVE marking for each wrong answer will be 1/3.
- 8. A periodic table is given at the end.
- 9. Some useful physical constants:

$R = 8.31451 \mathrm{J mol^{-1} K^{-1}}$
0.08206 L atm mol ⁻¹ K ⁻¹
$h = 6.626 \times 10^{-34} \text{J.s}$
$g = 9.8 \mathrm{m s^{-2}}$
$c \approx 2.998 \times 10^8 \mathrm{m s^{-1}}$
$N = 6.023 \mathrm{x} 10^{23} \mathrm{mol}^{-1}$
$k = 1.380 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
$e = 1.602 \times 10^{-19} \mathrm{C}$
$m_e = 9.109 \times 10^{-31} \text{ Kg}$
$\mathcal{E}_{0} = 8.854 \text{ x } 10^{-12} \text{ F m}^{-1}$
$\vec{F} = 9.65 \times 10^4 \mathrm{C mol}^{-1}$
≔ 4.184 J
= 760 Torr
$= 1.6022 \times 10^{-19} J$

CHEMISTRY

1. Temperature dependence of the rate constant for a reaction obeys the Arrhenius equation: $k = A \times e^{\left(\frac{-E_a}{RT}\right)}$. According to this equation, as T approaches infinity, k will approach:


(A)*A* (B) infinity (C) 1 (D)0

2. Among the following molecules, the one that is NOT infrared active is:

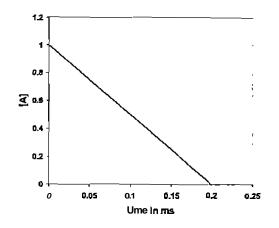
(A) C₂H₂, acetylene
(B) CH₄, methane
(C) N₂, nitrogen molecule
(D) CO₂, carbon dioxide

- 3. The molar entropy of a molecule that can have three distinct orientations at absolute zero is approximately:
 - (A) 9.13 J K^{-t} (B) 5.76 J K⁻¹ (C) 24.9 J K⁻¹ (D) 3.96 J K⁻¹
- 4. For the reaction of oxygen in equilibrium with ozone: 3O₂ (g) ↔ 2O₃ (g), the number of intensive variables to be specified to describe the state of the system, is:
 - (A)1 (B)2 (C)3 (D)4
- 5. The atomic term symbol for the helium atom in its ground state is
 - $(A)^{3}S_{1}$ $(B)^{3}P_{2}$ $(C)^{3}S_{0}$ $(D)^{1}S_{0}$

6. The operation of a Carnot engine between a high temperature T_H and a low temperature T_L is shown next in terms of temperature T and entropy S of some working fluid.

Among the following statements about this figure, the one that is NOT TRUE is:

- (A)The network done by the system is the area ABRQ DCRQ.
- (B) The step $C \rightarrow D$ corresponds to an isothermal expansion of the working fluid.
- (C) The heat deposited by the system in the thermal reservoir at T_L is the area DCRQ.
- (D) Both the steps $D \rightarrow A$ and $B \rightarrow C$ describe adiabatic processes.
- 7. Among the following forms of carbon, the thermodynamically most stable one is:
 - (A) Carbon nanotube
 - **(B)** Fullerene
 - (C) Diamond
 - (D)Graphite


- 8. One mole of an ideal gas expands from 5 atm against a constant pressure of 1 atm at 298 K. The magnitude of work done by the gas is:
 - (A) 1981 J (B) 3988 J (C) 991 J (D) 7282 J
- 9. The total degeneracy for a d¹ ion in spherical symmetry ic:
 - (A)2
 - (B) 3 (C) 5
 - (D) 10
- 10. A molecule has two C, axes perpendicular to each other. Hence,
 - (A) the molecule would have a non-zero dipole moment which may point either along one of the two axes.
 - (B) the molecule would have a non-zero dipole mement, which would point in the direction rnidway between the two axes, i.e. making an angle of 45° to each axis.
 - (C) the molecule has a non-zero dipole that would point in a direction perpendicular to the two axes.
 - (D) the molecule would have zero dipole mement.
- 11. Twenty four grams af zinc metal is dissolved in 1M HCl solution. The charge produced by the oxidation process is:
 - (A) 96500 Coulombs
 (B) 70836 Coulombs
 (C) 48250 Coulombs
 (D) 35418 Coulombs
- 12. The pH of 80 % ionised 0.01N acid solution is:
 - (A)2.0969 (B)0.2096 (C)20.09 (D)0.0269

13. Given the standard cell potentials as below:

$$AgCl + e = Ag + Cl^{-}, E^{\circ} = 0.2223 V$$

 $Ag^{+} + e = Ag, E^{\circ} = 0.799 V$

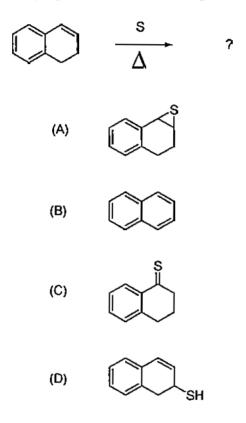
The solubility product for the reaction; $AgCl = Ag^+ + Cl^-$ is:

- (A) 2.80×10^{-10} (B) 0.80×10^{-10} (C) 28.0×10^{-10} (D) 1.80×10^{-10}
- 14. Concentration of the reagent A, [A], varies with time according to the graph shown next:

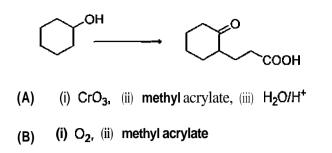
The order of *the* reaction is:

- (A) not defined (B) 1 (C) 2 (D)0
- 15. The point group symmetry for the molecule NH₃ is:
 - $\begin{array}{l} (A) \, D_{3h} \\ (B) \, C_3 \\ (C) \, C_{3v} \\ (D) \, C_{3h} \end{array}$

- 16. Among the following statements, the one that is NOT true for a catalyzed reaction is:
 - (A) The concentration of the catalyst does not enter in to the expression for equilibrium.


:: ;

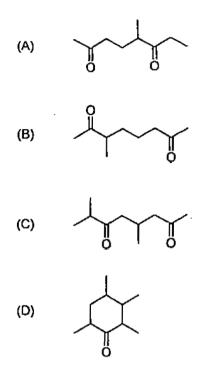
ł


- (B) The enthalpy of reaction does not change in the presence of a catalyst.
- (C) The activation energy does not change in the presence of a catalyst.
- (D) Without the catalyst, the reaction can still proceed.
- 17. For the reaction: 2 NH₃(g) \rightarrow 3 H₂ (g) + N₂ (g), $\Delta H^{\circ} = 92.22$ kJ mol⁻¹ and $\Delta S^{\circ} = 198.75$ J K⁻¹ mol⁻¹. With all reactants and products in their standard stare, this reaction will be spontaneous at:
 - (A) temperatures below 464 K (B) temperatures above 464 K (C) no temperature.
 - (D) all temperatures.
- 18. Among the following groups of metals, the one having the lowest melting points is:
 - (A)alkaline earth(B) transition(C)alkali(D)lanthanide
- 19. The composition of a sample of iron oxide is $Fe_{0.93}O$. The percentage of Fe in the +3 oxidation state in this sample is approximately:
 - (A) 0.07 % (B) 7.0% (C) 30.0% (D) 15.1 %
- 20. For the reaction $2P + 3Br_2 \rightarrow 2PBr_3$, the heat evolved is -243 kJ (AH). Hence, the enthalpy change when 2.63 g of P reacts with an excess of Br_2 will be:
 - (A) 10.3 kJ (B) 24.3 kJ (C) 1.03 kJ (D) 20.6 kJ

- 21. The product of the reaction of anisole with sodamide is:
 - (A) m-anisidine
 (B) p-anisidine
 (C) 1,2-diaminobenzene
 (D) 1,3-diaminobenzene
- 22. The major product in the following reaction is:

- 23. Number of signals expected in proton decoupled ¹³C NMR spectrum of 1,4dihydroxynaphthalene and 1,8-dihydroxynaphthalene are:
 - (A) 5 and 5 (B) 5 and 6 (C) 5 and 10 (D) 10 and 6

24. The reagents that can effect the following conversion are:

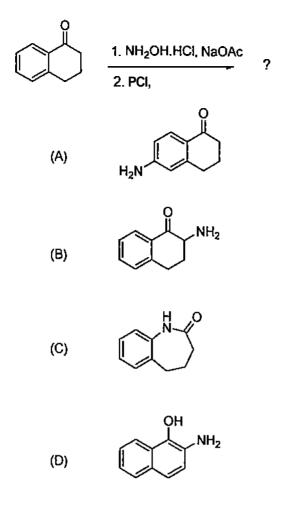

- (C) (i) CrO₃ (ii) pyrrolidine (iii) methyl acrylate, (iv) H₂O/H⁺
- (D) (i)H₂O₂, (ii) methyl acrylate,
- 25. In the multi-step synthesis given below, the overall yield for the formation of S from P is:

į

ł

P <u>90%</u>	80%_ Q*_	R	50%	S
(A)72%				
(B) 40 %				
(C) 36 %				
(D) 50 %				

26. Among the following molecules, the one that yields 2,3,6-trimethylcyclohex-2enone on treatment with dil. KOH is:

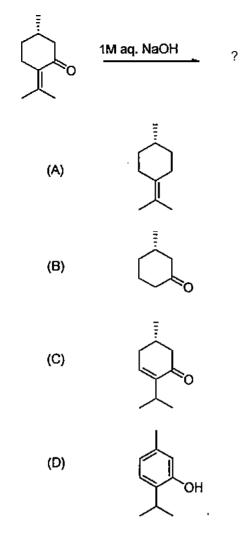


27. On heating, 1,3-butadiene reacts with elemental sulfur to yield:

(A)thiophene
(B) 2,5-dihydrothiophene
(C) 2,3-dihydrothiophene
(D) tetrahydrothiophene

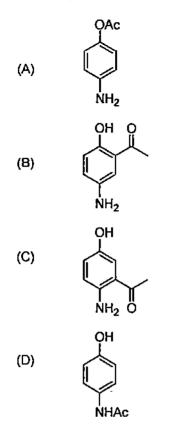
1

28. The major product in the following reaction is:

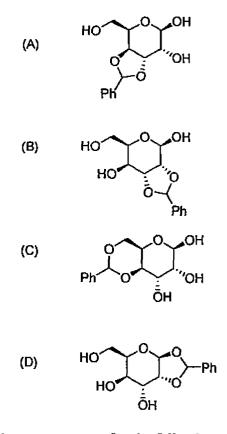


29. The reagent of choice for the selective reduction of ketones in presence of an ester is:

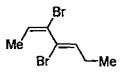
1.2.2.2.2.12


- (A) lithium aluminium hydride
- (B) sodium hydride
- (C) hydrogen and palladium on carbon
- (D) sodium borohydride

30. The major product obtained in the following reaction is:

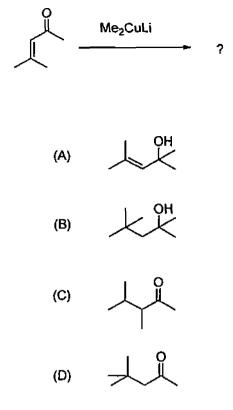

- 31. The biogenetic precursor for cholesterol is:
 - (A)mevalonic acid(B) cyclopentaphenanthrene(C) acetyl CoA(D) fatty acid

32. Reaction of 4-aminophenol with one equivalent of acetylchloride in the presence of pyridine yields:



- 33. An organic compound of molecular formula C_4H_8 exhibits only a singlet at δ 1.9 ppm with reference to tetramethylsilane in ¹H NMR spectrum. The compound is:
 - (A) 1-butene(B) cis-2-butene(C) cyclobutane(D) trans-2-butene

34. Reaction of D-glucose with benzaldehyde in presence of acid yields:

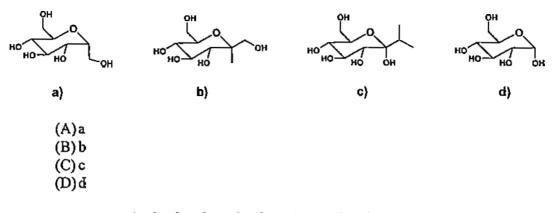


35. The IUPAC name for the following molecule is:

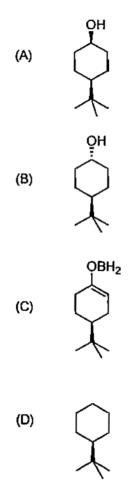
(A) (2E,4Z)-3,4-dibromo hepta-2,4-diene (B) (2Z,4E)-3,4-dibromo hepta-2,4-diene (C) (2Z,4Z)-3,4-dibromo hepta-2,4-diene (D) (2E,4E)-3,4-dibromo hepta-2,4-diene

36. The product formed in the following reaction is:

37. Among the following aldehydes, the one that does NOT undergo Cannizzaro reaction is:


, i

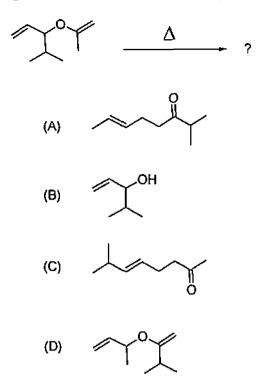
÷


- (A) formaldehyde
 (B) acetaldehyde
 (C) benzaldehyde
 (D) pivalaldehyde (trimethylacetaldehyde)
- 38. *R*-2-octyl tosylate is solvolyzed in 80% aqueous acetone under ideal S_N1 conditions. The product(s) will be:
 - (A) R-2-octanol and S-2-octanol in a 1:1 ratio
 (B) R-2-octanol and S-2-octanol in a 2:1 ratio
 (C) R-2-octanol only
 (D) S-2-octanol only

.

39. Among the following molecules, the conformation is stabilized only by anomene effect for:

40. Major product obtained in the reduction of 4-*tert*-butyl cyclohexanone with NaBH₄ is:



7

i

41. The product obtained in the following conversion is:

ALL REAL

- 42. For the preparation of 1 litre each of 1 M NaOH and 1 M KOH solutions, the quantities of NaOH and KOH required are, respectively:
 - (A) 40 gand 47.6 g (B) 40 g and 56 g (C) 20 g and 56 g (D) 40 g and 28 g
- 43. Zinc selenidc crystallizes in zincblende structure. The numbers of atoms of Zn and Se present in its unit cell are:
 - (A) 8 (B) 6 (C) 4 (D) 12

44. The role of Br₂ in the reaction $H_2O + Br_2 \rightarrow HOBr + HBr$ is:

(A)reducing agent
(B) oxidizing agent
(C)neither oxidizing nor reducing agent
(D) both oxidizing and reducing agents

45. Among the following complexes, the one ihat undergoes Z_{in} distortion is:

(A)[Ni(CO)₄] (B)[CuCl₄]²⁻ (C)[Cr(H₂O)₆]²⁺ (D)[Cu(NH₃)₆]²

46. The ground state for the V^{3+} ion in a tetrahedral environment is:

(A) ³T₁ (B) ³T₂ (C) ³A₂ (D) ³E

47. Treatment of Mo(CO)₆ with $Na^+C_5H_5^-$ results in:

(A) Na[Mo(η^1 -C₅H₅)(CO)₄] + 2C0 (B) Na[Mo(η^5 -C₅H₅)(CO)₃] + 3C0 (C) Na[Mo(η^3 -C₅H₅)(CO)₂] + 4C0 (D) Na[Mo(η^5 -C₅H₅)(CO)] + 5C0

48. The reaction:

 $[Ir(H)_2Cl(CO)(PPh_3)_2] \rightleftharpoons [IrCl(CO)(PPh_3)_2] + H_2$ is an example for:

(A) oxidative addition(B) substitution(C) insertion(D) reductive elimination

49. The smallest cation among Na⁺, Mg²⁺, Al³⁺, Si⁴⁺ is:

- (A) Mg²⁺ (B) Na⁺ (C) Al³⁺ (D) Si⁴⁺
- 50. The two main isotopes of poiassium are ³⁹K and ⁴¹K. The atomic mass of potassium may be used as 39.1. The abundances of the isotopes are:

(A) 95% 39 K and 5% 41 K (B) 90% 39 K and 10% 41 K (C) 5% 39 K and 95% 41 K (D) 10% 39 K and 90% 41 K 51. The metal ions that have the highest mobility in biological media are:

(A)Zn(II) and Ni(II) (3)Fe(II) and Cu(II) (C) Na(I) and K(I) (D)Mg(II) and Ca(II)

52. Hemerythrin belongs to the group of:

(A) non-herne iron protein
(B) binuclear copper protein
(C) herne-iron protein
(D) non-heme non-iron protein

53. Among the following bonds, the least stable one is:

(A) S-S (B) C=C (C)P-P (D) S=S

54. The number of isomers possible for octahedral $[CrCl_2(H_2O)_4]^+$ and octahedral $[CoCl_2(en)_2]^+$ are, respectively,:

(A) two and two(B) three and three(C) two and three(D) three and two

55. The cis-platin is:

(A)diamagnetic.
(B)paramagnetic.
(C) ferromagnetic.
(D)anti-ferromagnetic.

56. Among the following organometallic compounds, the one that follows the 18electron rule is:

(A) [Ni(η^{5} -C₅H₅)₂] (B) [Ru(η^{6} -C₆H₆)₂] (C) [Cr(η^{6} -C₆H₆)₂] (D) [Co(η^{5} -C₅H₅)₂] 57. Among the following oxides, the one having a normal spinel structure is:

(A)CuO (B)Co₃O₄ (C)Fe₃O₄ (D)TiO₂

58. Arnong the following complexes, the one having a metal-metal quadruple bond is:

- $\begin{array}{l} (A) [Re_2Cl_8]^{4-} \\ (B) [Cu_2(OAc)_4] \\ (C) [Mo_2(OR)_6] \\ (D) [Ru_2Cl(OAc)_4] \end{array}$
- 59. Among the following complexes, the one that is expected to show three d-d bands in the electronic spectrum is:

(A) $[Mn(H_2O)_6]^{2+}$ (B) $[FeCl_4]^-$ (C) $[Ti(H_2O)_6]^{3+}$ (D) $[Ni(H_2O)_6]^{2+}$

60. One hundred gram of CaCO₃ contains (N is the Avogadro's number):

(A)50N protons(B) N protons(C) 5N protons(D) 25N protons

61. Among the following pairs of ions/molecules, the one having similar shapes is:

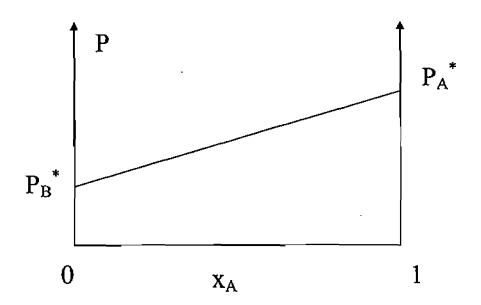
(A)CO₂ and H₂O (B) BF₃ and H₃C⁺ (C) CCl₄ and PtCl₄ (D) NH₃ and BF₃

62. The number of orbitals present in the n = 4 atomic shell is:

(A) 64 (B) 32 (C) 16 (D) 8 63. There are two containers having two moles of Ar each at a temperature of 298 K and a pressure of 1 bar. Both are heated such that they gain 1 KJ of energy each. First container was heated at constant V and the second container was heated at constant P. The final temperatures in the two containers will respectively be:

(A) 298 K and 350 K (B) 350 K and 400 K (C) 338 K and 322 K (D) 350 K and 350 K

- 64. The molecular weight of an ideal gas having a density of 1.5 $g L^{-1}$ at 100 °C and 600 Torr is:
 - (A)45.9 g/mol (B) 4.59 g/mol (C) 5.82 g/mol (D) 58.2 g/mol

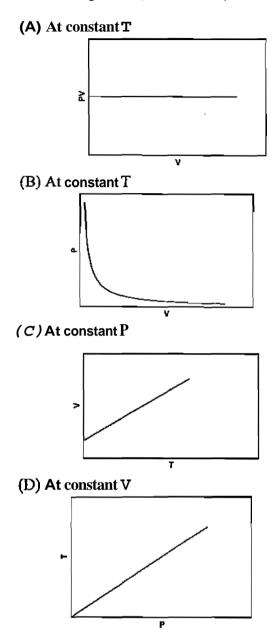

65. According to ideal gas law,:

- (A) molecules have neither attraction between them nor have any finite size, being treated as a point mass.
- (B) molecules do have attraction between them but do not have any finite size, being treated as a point mass.
- (C)molecules have no attraction between them but do have a finite size.
- (D) molecules have both attraction between them and have a finite size.
- 66. For the gas phase reaction: $CO + NO_2 \rightarrow CO_2 + NO$, the activation energy is found to be 116 kJ mol⁻¹. The enthalpy of formation for CO, NO₂, CO₂ and NO are -110, 33, -394 and 90 kJ mol⁻¹, respectively. The activation energy (in kJ mol⁻¹) for the reverse reaction is:
 - (A) 343 (B) -227 (C) 227 (D) 116

67. Factors affecting the average kinetic energy of gas rnolecules are:

- (A) pressure only
- (B) temperature only
- (C) both temperature and pressure
- (D)neither temperature nor pressure

68. The figure below shows the dependence at some fixed temperature T of the total vapour pressure P of a mixture of two volatile liquids A and B on the mole fraction x_A of component A, with P_A the vapour pressure of pure A and P_B the vapour pressure of pure B.



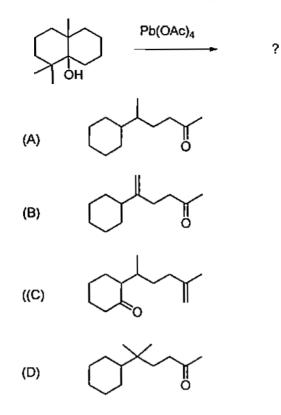
Among the following statement about this figure, the one that is NOT TRUE is:

- (A) The mixture is ideal.
- (B) In the region above the line $P_B^*P_A^*$, the liquid phase of the mixture is the stable phase.
- (C) Along the line $P_B P_A$, the liquid and vapour phases of the mixture are in equilibrium.
- (D) The vapour pressure of component B, P_B, is given by the relation $P_B = P_A^{\bullet}(1-x_A)$.
- 69. The enthalpy of fusion of H₂O at 0 °C is 1.436 kcal mol⁻¹. The AS for the process H₂O(l) ⇔ H₂O(s) at 0 °C is:
 - (A) 52.6 cal mol⁻¹ K⁻¹ (B) -5.26 cal mol⁻¹ K⁻¹ (C) 5.26 cal mol⁻¹ K⁻¹ (D) -52.6 cal mol⁻¹ K⁻¹

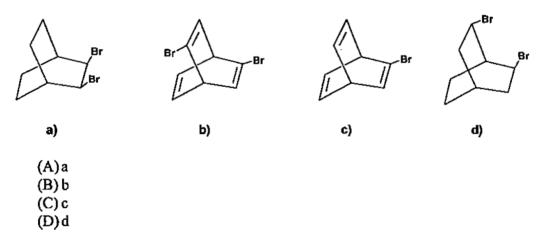
70. Among the following graphs, the one that does not correspond to ideal gas behaviour is: (P = pressure, V = volume, T = temperature in K):

-

71. A particle is confined to a one dimensional box of length 2a extending from x = -a to x = a along the x-axis. The average value of position and momentum, for the particle, if it is sitting in the lowest possible state is:

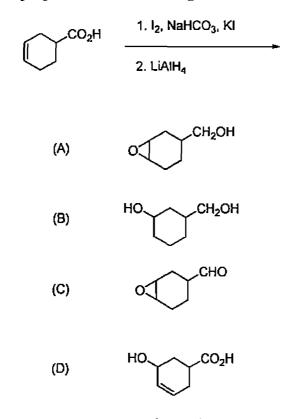

(A)
$$\langle x \rangle = 0$$
 and $\langle p_x \rangle = 0$
(B) $\langle x \rangle = a/2$ and $\langle p_x \rangle = 0$
(C) $\langle x \rangle = 0$ and $\langle p_x \rangle = -i\eta$
(D) $\langle x \rangle = 0$ and $\langle p_x \rangle = \eta$

- 72. In the following N denotes a suitable constant that one may choose as desired. Of the following the functions, the only function that is **NOT** an acceptable wave function for an electron in the Hydrogen atom is:
 - (A) N exp(-r)
 (B) N exp(r)
 (C) Nr exp(-r) exp(iφ)
 (D) Nr exp(-r²) exp(iφ)
- 73. In the electromagnetic spectrum, the wavenumber decreases in the order:
 - (A) X-ray > rnicrowave > infra-red > ultra-violet
 (B) X-ray > rnicrowave > ultra-violet > infra-red
 (C) X-ray > ultra-violet > infra-red > microwave
 (D) rnicrowave > infra-red > ultra-violet > X-ray
- 74. The number of electrons (per second) that pass ihrough a cross section of copper wire carrying a current of 10⁻⁹ A is:


(A) $62.5 \times 10^{10} \text{ e/s}$ (B) 120 e/s(C) 12000 e/s(D) $0.625 \times 10^{10} \text{ e/s}$

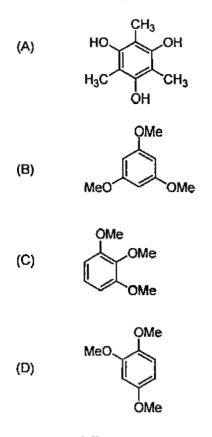
.

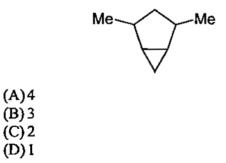
75. The major product in the following reaction is:


76. Among the following molecules, the one that is chiral is:

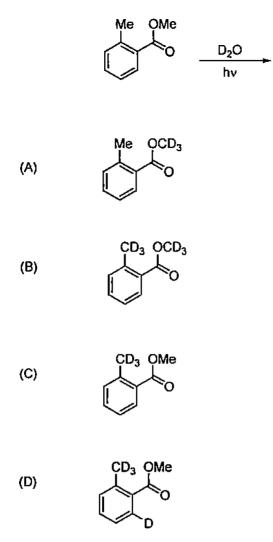
1000000

.

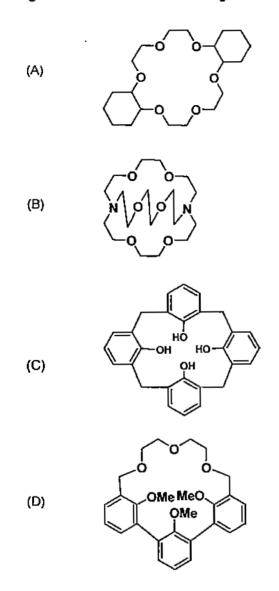

77. The major product in the following reaction is:


78. Arrange the following in the increasing order of acidity:
(i) Benzoic acid (ii) *p*-Methoxy benzoic acid (iii) *p*-Methyl benzoic acid

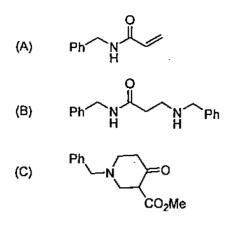
 $\begin{array}{l} (A)(i) < (ii) < (iii) \\ (B)(iii) < (ii) < (i) \\ (C)(ii) < (iii) < (i) \\ (D)(ii) < (i) < (iii) \end{array}$


79. A compound with molecular formula $C_9H_{12}O_3$ exhibited two singlets at δ 6.7 and δ 3.8 in ¹H NMR spectrum in 1.3 ratios. The structure of the compound *is*:

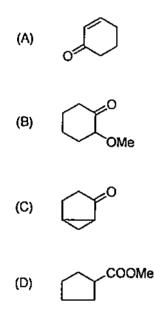
80. The number of diastereomers possible for the following compound is:



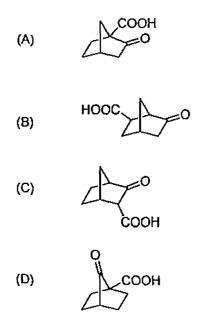
81. The product formed in the following reaction is:


- 82. Among the following molecules, the one that will NOT undergo a Diels-Alder reaction is:
 - (A) ethylene
 (B) 2-buteńe
 (C) maleic anhydride
 (D) succinic anhydride

83. The generic names for the following molecules are, respectively:


- (A) crown ether, cryptand, calixarene, and hemispherand.
- (B) cryptand, calixarene, crown ether and hemispherand.
- (C) crown ether, hemispherand, cryptand, and calixarene.
- (D) crown ether, calixarene, cryptand, and hemispherand.

84. The major product in the reaction of rnethyl acrylate and benzylamine under ambient conditions is:



(D) Poly-(N-benzylacrylamide)

85. The major product of the reaction of 2-chlorocyclohexanone with NaOMe is:

86. Among the following compounds the one that readily undergoes decarboxylation upon heating is:

- 87. In the mass spectrum of CH₂Cl₂, the ratio of peaks at mass values 84, 86 and 88 will respectively be:
 - (A) 3:1:1 (B) 3:2:1 (C)4:2:1 (D) 9:6:1
- 88. The enthalpy change, AH, for the following process are given in kJ/mol: sublimation of K(s) = +89, ionization of K(g) = +425; dissociation of $Cl_2(g) = +244$, electron gain by Cl(g) = -355, formation of KCl(s) = 438. Using a Born-Haber cycle, the lattice enthalpy of KCl(s) is calculated to be:
 - (A)719 (B)0 (C)-719 (D)1438
- 89. The absorption maximum of a given sample of cadmium sulfide is 470 nm. The approximate band gap is:
 - (A) 200 kJ mol⁻¹ (B) 250 kJ mol⁻¹ (C) 100 kJ mol⁻¹ (D) 150 kJ mol⁻¹

÷.,

90. For a 6p sub-shell, the most positive value that m_l can have is:

(A)+1 (B)+6 (C)+3 (D)+7

91. PhMgBr reacts with methanol to give:

(A) a mixture of anisole and Mg(OH)Br
(B) a rnixture of toluene and Mg(OH)Br
(C) a mixture of phenol and MeMgBr
(D) a mixture of benzene and Mg(OMe)Br

92. $C_2B_{n-2}H_n$ is an isoelectronic analogue of:

 $(A) B_n H_n$ $(B) B_n H_n^{-1}$ $(C) B_n H_n^{-3}$ $(D) B_n H_n^{-2}$

93. The point group symmetry of cis-[Co(NH₃)₄Cl₂]⁺ is:

 $\begin{array}{l} (A)\,C_{2\nu} \\ (B)\,Oh \\ (C)\,D_{2h} \\ (D)\,C_{4\nu} \end{array}$

94. The electron transfer reaction between $[Co(NH_3)_5Cl]^{2+}$ and $[Cr(H_2O)_6]^{2+}$ in acidic medium leads to the formation of a chromium species of formulation:

 $\begin{array}{l} (A) \left[Cr(NH_3)_5(H_2O) \right]^{2+} \\ (B) \left[Cr(NH_3)_5Cl \right]^{2+} \\ (C) \left[Cr(H_2O)_5Cl \right]^{2+} \\ (D) \left[Cr(NH_3)_6 \right]^{3+} \end{array}$

95. Among the following molecules, the one that is polar is:

(A)CH4 (B)BF3 (C)SF6 (D)NH3

96. The VSEPR model is based on the:

(A) number of bonded pairs of electrons around the central atorn.

(B) number of bonded and lone pairs of electrons around the central atom.

1

the second secon

A new rest of the second se

(C) number of lone pairs of electrons around the central atom.

(D) number of protons around the central atorn.

97. According to Irving-William series, Cu(II) is more stable than Ni(II) because of:

(A) Jahn-Teller distortion
(B) higher trans effect
(C) complexation with labile ligands
(D) induction effect

98. Arnong the hydrogen halides, the one having the highest bond energy is:

(A)HI (B)HF (C)HBr (D)HCl

99. Among the following ligands, the strongest π acceptor is:

(A) CN⁻ (B) CO (C) N₂ (D) NO⁺

- 100. Among teflon, water, benzoic acid and protein, hydrogen bonding is not important only in:
 - (A) teflon(B) water(C) benzoic acid(D) protein

End of the Question Paper

n (Stein																		1.A.a 2
H H																		He
1007	haryaka ma	I										I	brisen	(art-in	A600 4	-	6.urb	1-0024L
3	4												5	6	7		2	10
Li	Be												В	C	N	Ο	F	Ne
KOIN	<u>natzz</u> regenium												1/- 911 (2007)170071	1/(4) 1/00	1007	15(^) 1607	10.775	27 (A) 2742m
11	12												13	24	15	16	17	18
Na	Ma												Al	Si	Ρ	S	CI	Ar
27 940	Mg												X , 302	24/46	y, ar	.V(2)	15 (5)	11641
19 19	63450.M 20		71 x	22	23	christein 24	25	26	27	13a 28	29	30	31	32 32	317K		35	407km 346
	-		Sc	Ti	ν	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Вг	Kr
K	Ca			47 647	-	-8192	1911 U 1919 U	1 C	200		.990	4_11 %//	Sa Sm		(1)2.		79.904	1210
			- 11/64 - septe	crunka	-924 	2017: CO10 2000	TOTAL P	52912 Alfandura	0.000,00	tries.	141	ADDITION OF	naura		SHARE!	HUND	E.dev	0.00
37	38		38	40	41	42	40	<u> </u>	45	46	47	41	49	50	51	52	5	<u>5</u> 4
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln 1992	Sn	Sb	Te	126.(*)	Xe
	<u>44</u> janual		14.00	31724 Iumrun	97 (r.) 1911-191	Print Anorthan	- De Maria	112.67	402 ST 110000	10542 diahun	311	112.11 112.11	Lydun	101	Lanuti	MAR IN	1,31800	व्यक्त
55	S 6	57-70	71	72	נק	74	75	16	Π	78	70	BÔ	<u>61</u>	82	83	84	65	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	0 s	l fr	Pt	Au	Hg	11	Pb	Bi	PO	At	Rn
13, 91	_()/))		1/4 9/	1/841 NØMORA	177	NAME OF THE OWNER OWNER OWNER OWN	144 7) Kanare	9:021 1003(1)	19:72	117 AM	178 7/ UNITOTE PR	<u>797</u>	اسر الرام	<u>yu</u> y umagadan	79.95	DO.	1210	1 /7л
17	88	89-102	103	104	105	106	107	100	109	110	111	112		114,				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uua				
<u>(273</u>	161		1761	C9/1	PNI		(28-g	ping	1744	<u>97/1</u>	£91.,	թեղ	1					

Lanthanide series	ioninan 57	- 5 10	ran 50an		(ca ji kun	var62***	-unglint 63	98) m	65	74-sim 66	Feloiza 67	68	- 60 ,	70 THOUS
, Fautuatios series	La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dÿ	Ho	Er	Tm	Yb
* Actinide series	 	thailust 90	i petadinum 91	Uranu,sa B2	93	NATUR 84	3094C100 95	36 36	67	98	99 99		ran sterior 101	102 102
	Ac	Th	Pa	U 2973	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No